12Materi Pembelajaran. A. Pendahuluan. Prinsip kerja generator sinkron berdasarkan induksi elektromegnetik. Setelah rotor diputarkan oleh penggerak mula (prime over) dengan demikian kutub-kutub yang ada pada rotor akan berputar.
BAB 9 A. Gaya Gerak Listrik GGL dan Elemen Listrik Primer dan Sekunder Kalau dalam rangkaian, supaya beda potensial antara dua titik itu tetap ada pada saat arus mengalir, harus ada sumber energi yang mengisi kekurangan energi. Kan energi bisa hilang waktu arus lewat pada beda potensial. Nah, energi yang dikeluarkan sebagai pengisi kekosongan oleh sumber inilah yang disebut Gaya Gerak Listrik. Sumber ini gak boleh sumber listrik loh. Ia mestinya kimiawi, magnetik ataupun mekanik atau non listrik lainnya. Simbolnya huruf E melintir. Pada dasarnya sumber GGL itu segala jenis alat yang muatan positif ama negatifnya terpisah. Kedua ujung dari alat tersebut di sebut terminal. Muatan positif ya numpuknya di terminal positif, sementara muatan negatif, tentunya di terminal negatif. Terminal positif namanya anoda. Terminal negatif namanya katoda. Ingetnya gini aja. Kalau positif itu ga ada noda. Ga ada noda ya gak belajar.. hehe. Ga ada noda kan anoda, seperti gak ada tuhan, kan disebut ateis. Huruf a didepannya itu loh. Positif gak ada noda, negatif katoda. Mudah kan menghapalnya. Oke, kembali ke anoda ama katoda tadi. Karena kedua jenis muatan ini misah, akibatnya ada medan listrik. Medannya nunjuk dari anoda ke katoda. Inget tuh arahnya. Dari anoda ke katoda. Medan ini, kemudian, memaksakan sebuah gaya pada muatan positif. Medan ini memaksa, mendorong muatan positif dalam alat ini menuju katoda. Sementara itu, gaya ini juga memaksa muatan negatif ke anoda. Supaya muatan positif tetap di terminal positif dan muatan negatif tetep di terminal negatif, alat ini menghasilkan gaya non listrik yang melawan gaya listrik dan terus mendorong muatan positif ke anoda dan muatan negatif ke katoda. Jadi seperti gulat gitu. Sumo bisa juga. Medan listrik vs medan non listrik. Saling dorong mendorong. Mungkin bisa dibayangkan GGL itu seperti air dalam pipa tegak yang dipaksa naik. Waktu airnya naik ke puncak anoda gravitasi maksain supaya tuh air turun katoda. Jadi supaya air tetap bisa naik, harus ada gaya non gravitasi, seperti pompa misalnya, yang mendorong air melawan gravitasi. Nah, dalam kasus GGL, gaya dari mesin pompa ini bisa berasal dari reaksi kimia, seperti baterai. Bisa juga dari gaya magnet, seperti dari generator listrik. Atau dari sumber mekanik lainnya lah. Seperti dalam kasus air tadi, dimana energi potensial gravitasi air bertambah saat air di dorong semakin tinggi, gaya lain ini menyebabkan muatan mengalir ke anoda, meningkatkan energi potensial listrik. Akibatnya terjadi beda potensial antara anoda dan katoda. Kalau ga ada rugi gara-gara panas waktu muatan mengalir ke anoda di dalam alat ini, beda potensialnya pastilah sama dengan GGL sumber. Ituloh, kan ada hukum kekekalan energi. Kalau, di luar alat ini, kita pasang apakeq yang membuat anoda terhubung balik ke katoda, maka arus akan mengalir lewat penghubung ini dari anoda ke katoda. Ya penghubungnya bisa kabel atau kawat telanjang kesetrum tanggung sendiri. Ntar, nih ada contoh gambarnya. Coba liat gambar ini Titik a dengan c itu kalau dihubungkan akan menjadi rangkaian loh. Jadi titik a dihubungkan ke anoda dan titik c dihubungkan ke katoda. Coba lihat di gambar ini biar jelas Muatan kehilangan energi listrik yang bergerak dari terminal tinggi ke terminal rendah lewat rangkaian luar, lalu dipaksa oleh gaya non listrik kembali ke anoda lewat alat GGL dan karenanya memperbaiki energi listriknya. Seperti sistem air kita lo. Airnya mengalir kembali lewat beberapa pipa lain lalu kembali lagi ke pipa tegak dengan dorongan pompa. Perbedaan potensial tetap terjaga antara terminal saat tidak ada arus. Kan gak ada kawat yang menghubungkan terminal. Nah, beda potensial kalau ga ada arus ini namanya GGL Rangkaian Terbuka. Kalo kita menghubungkan satu kawat dengan hambatan R pada kedua terminal itu, berarti arus akan mengalir lewat hambatan itu dengan tegangan V yang bekerja di sepanjang terminal. Kalau kabel ini cuma satu-satunya hambatan yang ada di rangkaiannya, arusnya pasti mengikuti hukum Ohm, yaitu I = V/R = GGL/R. Tapi kenyataannya, selalu ada rugi panas dalam sumber GGL. Panas ini muncul karena agitasi molekul saat muatan mengalir dalam sumber. Molekulnya merinding. Kan semakin kuat merindingnya molekul, semakin panas suhunya. Oke deh, kalau dalam kasus ini ya berarti GGL ga lagi sama dengan V. Ada energi non listrik yang hilang menjadi panas. Besarnya rugi panas ini sebanding dengan arus, jadinya GGL = V – Nah, r disini adalah tetapan proporsionalitas. Karena dimensinya sama dengan hambatan, jadi dia lebih sering disebut “hambatan dalam” atau Rint. Hambatan dalam apa? Ya hambatan dalam sumber. Kalau gak ada arus mengalir melewati sumber, maka beda potensial sepanjang sumber itu sama aja dengan GGL rangkaian terbuka sumber, karena kan gak ada tegangan jatuh gara-gara arus lewat ke hambatan dalam. Tapi, kalau arusnya ngalir di rangkaian luar, arus yang sama juga bakalan mengalir di dalam sumber dan tegangan bakalan jatuh sebesar Vin = I. Rint. Jatuh tegangan ini terjadi di sepanjang hambatan dalam Rint. Akibatnya, tegangan yang ada pada rangkaian adalah E – Biasanya sumber GGL itu ya baterai. Baterai memakai gaya kimia dan karenanya energi kimia inilah yang dipakai untuk memaksa arus melewati baterai dari katoda ke anoda. B. Mengukur Gaya Gerak Listrik GGL dan Tegangan Jepitnya Mengukur Gaya Gerak Listrik Istilah gaya gerak listrik dan tegangan jepit sebenarnya bersumber pada keadaan sumber tegangan yang terpasang secara terbuka dan tertutup. Untuk mengukur gaya gerak listrik ggl dan tegangan jepit kita gunakan alat yang dinamakan Voltmeter. Sedangkan untuk mengukur besar kuat arus, kita gunakan Amperemeter. Berikut ini adalah gambar kedua alat tersebut yang sering digunakan di sekolah-sekolah, fungsi alat ini terdiri dari dua yaitu sebagai pengukur arus amperemeter dan sebagai pengukur beda potensial voltmeter. Bagaimana cara membaca hasil pengukuran dengan menggunakan amperemeter atau Voltmeter? Sebelum kita membahas mengenai bagaimana cara membaca hasil pengukuran arus listrik dan tegangan, perlu diketahui dulu bagian-bagian dari alat tersebut. Bagian-bagian amperemeter/voltmeter terdiri dari batas ukur, terminal positip skala dan terminal negatip seperti terlihat pada gambar. Untuk Membaca hasil pengukuran amperemeter/voltmeter kita gunakan rumus NP= Nilai pengukuran, PJ = penunjukan jarum, ST=skala tertinggi, dan BU= Batas ukurContoh Berikut ini adalah dua contoh pembacaan dari dua posisi jarum Q dan P 1. Nilai yang ditunjukkan P adalah Batas ukur BU = 1 ASkala tertinggi ST = 100Penunjukan Jarum PJ = 54Berapa nilai pengukuran NP = …… ?Jawab 2. Nilai yang ditunjuk Q adalahMisal kita ambil nilai batas ukur adalah 100 mA. Penunjukan jarum 22 dan skala tertinggi adalah 100, maka nilai pengukuran Q adalah ....Jawab Membaca hasil pengukuran pada skala amperemeter/Voltmeter harus dibiasakan dan berlatih terus, hal ini untuk memudahkan dalam menjawab soal atau penerapan aplikasi yang membutuhkan kecepatan dalam membaca skala. Di samping anda dilatih untuk membaca skala, ada hal yang penting lagi yang berkenaan dengan keamanan alat, yaitu cara memasang amperemeter/voltmeter. Jika dalam pemasangan amperemetr dan voltmeter kita salah, maka alat tersebut bisa mengalami kerusakan. Berikut ini adalah cara pemasangan amperemeter dengan menggunakan KIT listrik yang terdiri dari panel rangkaian, lampu, batu baterai dan soket penghubung komponen-komponen yang ada. Mengukur Tegangan Listrik Sebelumnya kita sudah membahas mengenai konsep tegangan atau beda potensial, sedangkan pada postingan kali ini Mafia Online akan membahas mengenai konsep gaya gerak listrik dan tegangan jepit. Komponen seperti baterai atau generator listrik yang mengubah energi tertentu menjadi energi listrik disebut sumber gaya gerak listrik atau ggl. GGL didefinisikan sebagai beda potensial antara kedua kutub sumber, apabila tidak ada arus yang mengalir ke rangkaian luar dari sumber. ggl disimbolkan dengan ε. Sebuah baterai secara riil dimodelkan sebagai ggl ε yang sempurna dan terangkai seri dengan resistor r yang disebut hambatan dalam baterai. Oleh karena r ini berada di dalam baterai, kita tidak akan pernah bisa memisahkannya dari baterai. Kedua titik a dan b menunjukkan dua kutub baterai, kemudian yang akan kita ukur adalah tegangan di antara kedua kutub tersebut. Tegangan diantara kedua kutub sumber arus listrik ketika sumber arus listri tersebut terbebani atau mengalirkan arus listrik. Jadi, perbedaan gaya gerak listrik ggl dengan tegangan jepit sebagai berikut. Kalau ggl didefinisikan sebagai beda potensial antara ujung-ujung kutub sumber arus listrik ketika sumber arus listrik tersebut tidak mengalirkan arus listrik. Contohnya pada saat sebuah baterai tidak dihubungkan dengan rangkaian apapun. Sedangkan, tegangan jepit didefiniskan sebagai beda potensial antara ujung-ujung kutub sumber arus listrik ketika sumber arus listrik mengalirkan arus listrik. Misalnya pada saat baterai mengalirkan arus listrik pada suatu rangkaian listrik. Ketika tidak ada arus yang ditarik dari baterai, tegangan kutub sama dengan ggl, yang ditentukan oleh reaksi kimia pada baterai Vab= ε. Jika arus I mengalir dari baterai, ada penurunan tegangan di dalam baterai yang nilainya sama dengan Dengan demikian, tegangan kutub baterai tegangan yang sebenarnya diberikan dirumuskan Vab = ε – dengan Vab = tegangan jepit V ε = ggl baterai V I = arus yang mengalir A r = hambatan dalam baterai Ω
Trafomemiliki 3 bagian utama, yaitu (1) Inti besi yang berlapis - lapis, (2) Kumparan primer (merupakan kumparan yang dialiri tegangan listrik dari PLN atau input), dan (3) Kumparan sekunder (merupakan kumparan yang dihubungkan dengan beban sebagai tegangan keluaran atau output). B. Prinsip Kerja Transformator
Tentunya sudah paham kan apa itu sumber arus lisrik? Bagi anda yang belum paham, sumber arus listrik bisa didefinisikan benda-benda yang dapat menghasilkan arus listrik, contohnya baterai, akumulator, elemen Volta dan lainya. Contohnya saja mobil-mobilan dapat bergerak karena memperoleh energi listrik dari baterai, lampu senter dapat digunakan setelah dipasang baterai ke dalamnya dan bicara mengenai enargi listrik, kali ini kita akan bahas mengenai perbedaan elemen primer dan elemen skunder. Karena topik ini sangat berhubungan. Untuk lebih jelasnya, silahkan Elemen Primer dan Elemen Skunder yang Sebaiknya Anda Tahu 1. Elemen PrimerElemen primer merupakan sebuah sumber arus listrik yang bersifat sekali pakai atau tidak dapat diperbarui . elemen primer ini hanya bisa digumakan sekali dan tidak bisa mengisi elemen primer lagi jika energinya sudah habis. Anda harus mengganti sumber arus listrik pada elemen primer tersebut dengan sumber arus yang baru jika energinya sudah habis. Contoh elemen primer adalah sebagai berikut BateraiJika anda mengamati, baterai memiliki dua kutub yaitu kutub positif dan kutub negatif. Baterai termasuk jenis elemen kering. Kutub positif baterai tersebut berupa batang karbon yang dicampuran dengan mangan dioksida MnO2 dan amonium klorida NH4Cl. sedangkan kutub negatif baterai adalah lapisan paling luar yang terbuat dari seng Zn.Seperti yang telah kita ketahui, baterai mempunyai kutub positif dan kutub negatif. Campuran mangan dioksida pada batrei berfungsi sebagai zat pelindung elektrolit. Pada lapisan terluar baterai tersebut yaitu terdapat seng yang berfungsi sebagai kutub negatif dan campuran mangan dioksida yang berfungsi sebagai elektrolit. Di antara kutub positif dan kutub negatif ini terdapat beda potensial yang menyebabkan baterai tersebut dapat mengalirkan arus listrik jika dipasangkan secara benar dalam sebuah rangkaian. Baterai termasuk sumber arus listrik yang tidak dapat diisi ulang karena karbon dan elektrolit dari baterai yang telah habis tidak dapat menghasilkan arus listrikElemen VoltaContoh elemen primer selanjutnya adalah elemen volta. Elemen volta ini kali pertama ditemukan oleh Alessandro Volta 1745 – 1827 seorang ahli Fisika berkebangsaan Italia. Elemen volta adalah sel elektrokimia yang dapat menghasilkan arus listrik. Elemen volta ini terdiri atas tabung kaca yang berisi larutan asam sulfat H2SO4.Logam Cu tembaga berperan sebagai anoda dalam elemen volta sedangkan kutub negatif elemen volta adalah Zn seng. Reaksi kimia yang terjadi Jika elektroda-elektroda seng dan tembaga dimasukkan ke dalam larutan asam sulfat maka akan menyebabkan terjadinya muatan listrik positif dan negatif. Seperti yang telah kita ketahui bahwa lempeng tembaga memiliki potensial lebih tinggi daripada potensial lempeng seng dan elektron akan mengalir dari lempeng seng menuju lempeng tembaga. Nah, jadi Jika kedua lempeng seng dan tembaga ini dirangkaikan dengan lampu maka lampu akan menyala. Namun aliran arus listrik pada elemen volt tidak berlangsung lama sehingga lampu akan padam. Penyebab tak lamanya lampu menyala dikarenakan gelembung-gelembung gas hidrogen yang dihasilkan oleh asam sulfat H2SO4 akan menempel pada lempeng tembaga. Gelembung gas hidrogen ini akan menghambat aliran elektron karena arus listrik adalah aliran elektron-elektron sehingga jika aliran elektron ini terhambat, tidak akan ada arus yang mengalir. Peristiwa penghambatan ini disebut polarisasi yaitu peristiwa tertutupnya elektroda elemen oleh hasil reaksi yang mengendap pada elektroda tersebut. Namun ternyata ide Volta inilah yang menjadi prinsip dalam pembuatan baterai dan DaniellElemen daniel adalah elemen bersifat primer yang cara kerjanya pada dasarnya sama dengan cara kerja elemen volta. . Elemen daniel ini anodanya berupa silinder tembaga dalam larutan CuSO4 dan katodanya berupa seng dalam larutan ZnSO4. Hasil larutan daniel tersebut tersebut dinamakan depolarisator sehingga usia elemen dapat lebih lama. Lihat juga beda cinta sayang dan suka2. Elemen SekunderNah, berbeda dengan elemen primer yang tidak dapat diperbarui , elemen sekunder bersifat dapat diperbaharui. Elemen sekunder ini meskipun teganganya suatu saat akan habis namun anda masih bisa mengisi elemen tersebut. Accumulator aki Nah, untuk contoh elemen primer adalah accumulator. Accumulator disebut juga elemen basah yang terdiri atas pasangan-pasangan keping timbal dan timbal dioksida yang mampu memberikan tegangan sampai 2 volt. Kapasitas penyimpanan sebuah aki dapat terlihat berupa tulisan angka pada aki sebagai contoh adalah pada aki tertulis 12V 40 AH artinya aki mempunyai ggl 12 volt dan mengalirkan arus listrik 40 ampere selama 1 ini juga mempunyai dua buah kutub yaitu kutub positif dan kutub negatif sama dengan baterai. Kutub negatif accumulator terletak pada timbal dan kutub positif pada timbal dioksida, timbal dan timbal dioksida dicelupkan ke dalam larutan elektrolit asam sulfat. Nah, keuntungan pemakaian akumulator ini yaitu energi listriknya dapat diperbaharui dengan dimuati oleh sumber arus searah DC.Perubahan energi saat Accumulator atau aki digunakan yaitu dari energi kimia menjadi energi listrik. Sedangkan saat pengisian aki terjadi perubahan energi dari energi listrik menjadi energi kimia. Nah, untuk cara pengisian aki adalah sebagai dengan sumber tegangan arus DC yang beda potensialnya lebih tinggi dari aki yang mengalir kecil sehingga perlu waktu lebih lama. Hal ini bertujuan agar tidak merusakkan sel konsentrasi larutan dengan ukuran kapasitas akinya dengan sekarang sudah ada gambaran kan mengenai perbedaan antara elemen primer dan elemen sekunder? Semoga menjadi referensi yang bermanfaat.
Uraikanbagaimana prinsip kerja elemen listrik primer dan sekunder Ukurlah Uraikan bagaimana prinsip kerja elemen listrik primer School SMA Unggulan CT Foundation
Prinsip Kerja dan Jenis TransformatorApa itu Transformator? Komponen Transformator 1. Inti2. Lilitan3. Isolasi4. Isolasi Minyak5. Terminal BusingPrinsip Kerja Transformator ​Jenis Transformator1. Transformator Daya2. Transformator Tipe Shell 3. Transformator Tipe Inti 4. Transformator Toroida 5. Autotransformator Listrik adalah salah satu penemuan terbesar dalam sejarah umat manusia yang telah mengubah dunia secara luar biasa. Hari ini, kita mendapat manfaat dari berbagai kemudahan yang dibawa dengan memanfaatkan kekuatan fundamental alam ini dan mentransfernya ke daerah-daerah yang jauh dari jangkauan. Namun, ini tidak selalu terjadi. Selama awal 1800-an, satu-satunya perangkat penghasil arus adalah sel volta, yang menghasilkan arus kecil dengan melarutkan logam dalam asam. Pada tahun 1830, Faraday dan Henry mempercepat penelitian tentang listrik dengan menghubungkannya dengan magnet, yang mengarah pada penemuan induksi elektromagnetik. Penemuan ini merevolusi dunia dengan meletakkan dasar untuk pengembangan generator AC, namun, baru pada tahun 1884 tiga insinyur Hungaria, Károly Zipernowsky, Ottó Bláthy, dan Miksa Déri ZBD, mematenkan trafo komersial pertama yang memungkinkan listrik ditransmisikan dalam jarak jauh. Apa itu Transformator? Transformator atau yang sering disebut pula trafo adalah perangkat listrik yang menggunakan induksi elektromagnetik untuk mentransfer arus bolak-balik dari satu rangkaian ke rangkaian lainnya. Ini digunakan baik untuk mengubah AC tegangan rendah ke AC tegangan tinggi atau untuk mendapatkan AC tegangan rendah dari AC tegangan tinggi. Komponen Transformator Terlepas dari kenyataan bahwa transformator dapat memiliki berat mulai dari beberapa gram hingga ratusan metrik ton, ada beberapa komponen dasar yang tercantum di bawah ini yang umum dalam konstruksinya. 1. Inti Inti trafo biasanya terbuat dari bahan seperti besi lunak atau CRGO cold-rolled grain-oriented steel, karena memiliki permeabilitas tinggi, dan digunakan untuk memberikan dukungan pada belitan dan jalur terkontrol untuk fluks magnet yang dihasilkan di transformator. Inti biasanya terdiri dari beberapa lembaran atau lapisan laminasi tipis, bukan batang padat. Desain ini membantu dalam menghilangkan dan mengurangi pemanasan. Untuk mengurangi kerugian arus eddy, inti terdiri dari tumpukan laminasi baja silikon tipis yang dipisahkan oleh lapisan pernis tipis. 2. Lilitan Lilitan adalah kabel melingkar di sekitar inti. Sebuah transformator terdiri dari dua lilitan utama primer dan sekunder. Kumparan yang menarik listrik dari sumbernya dikenal sebagai lilitan primer, sedangkan koil yang memasok energi ke beban di ujung inti yang lain dikenal sebagai lilitan sekunder. 3. Isolasi Isolasi adalah salah satu komponen terpenting dari transformator. Isolasi melindungi transformator dari beberapa bahaya listrik. Kerusakan paling serius pada transformator dapat disebabkan oleh kegagalan isolasi. Isolasi diperlukan di beberapa bagian transformator, seperti antara lilitan dan inti, antara lilitan, setiap putaran lilitan, dan semua elemen pembawa arus dan tangki. Isolator harus memiliki kekuatan dielektrik yang tinggi, kualitas mekanik yang kuat, dan kapasitas untuk menahan suhu tinggi. Dalam transformator, isolasi selulosa biasanya digunakan untuk memenuhi kondisi ini. Mereka mempertahankan muatan listrik ketika transformator dihidupkan, dan dengan demikian, mengisolasi komponen transformator yang ada pada tegangan yang berbeda. Ini juga melayani peran mekanis dengan mendukung belitan dan membantu stabilitas termal transformator dengan membentuk saluran pendingin. 4. Isolasi Minyak Di beberapa transformator, oli transformator terutama melayani tiga tujuan isolasi antara bagian konduktor, pendinginan dengan pembuangan panas yang lebih baik, dan deteksi kesalahan. Isolasi minyak sering digunakan bersama dengan isolasi selulosa padat. Ini digunakan untuk menutupi semua bagian terbuka yang tidak memiliki isolasi padat. Minyak juga menembus kertas dan mengisi lubang udara, sehingga meningkatkan kualitas isolasi kertas. Limbah panas dihamburkan oleh belitan transformator dan harus dihilangkan. Minyak trafo menyerap panas dari belitan dan mengalirkannya ke bagian luar trafo, di mana ia dapat disebarkan ke udara luar. Minyak yang digunakan dalam transformator biasanya diperoleh melalui distilasi fraksional dan pengolahan selanjutnya dari minyak mentah. Ada dua jenis utama minyak trafo berbasis parafin dan minyak trafo berbasis nafta; namun, karena sifatnya yang tahan api dan menyerap kelembaban yang unggul, minyak sintetis seperti minyak silikon menjadi populer. 5. Terminal Busing Biasanya ada dalam transformator tegangan tinggi, terminal busing transformator adalah perangkat isolasi yang memungkinkan konduktor pembawa arus melewati tangki ground transformator tanpa membuat kontak listrik. Mereka biasanya terbuat dari porselen atau ebonit dan terlihat seperti kolom cakram bundar. Medan listrik dihasilkan oleh semua elemen yang memiliki muatan listrik. Ketika konduktor berlistrik mendekati bahan yang diarde dengan potensial bumi, itu dapat menghasilkan garis medan yang sangat kuat, terutama jika garis medan dipaksa untuk melengkung secara tiba-tiba di sekitar material yang diarde. Transformator busing memberikan insulasi yang efektif di sekitar terminal konduksi dan tangki transformator yang di ground. Prinsip Kerja Transformator Prinsip kerja trafo didasarkan pada hukum Faraday tentang induksi elektromagnetik, yang menyatakan bahwa “Gaya gerak listrik di sekitar jalur tertutup sama dengan negatif dari laju perubahan fluks magnet terhadap waktu yang dilingkupi oleh jalur tersebut.” Dalam sebuah transformator , ketika arus dilewatkan melalui kumparan primer, medan magnet terbentuk di sekitarnya. Karena arus bolak-balik, dan kumparan saling berdekatan, medan yang berubah ini meluas ke kumparan sekunder, sehingga menginduksi tegangan di sekunder. Proses ini dikenal sebagai induksi timbal balik, di mana sebuah kumparan kawat secara magnetis menginduksi tegangan ke kumparan lain yang terletak di dekatnya. Selain itu, transformator memperoleh namanya dari fakta bahwa mereka “mengubah” satu tingkat tegangan atau arus ke tingkat yang lain. Transformator dapat mengubah tingkat tegangan dan arus catu daya mereka tanpa mengubah frekuensi atau jumlah daya listrik yang dilewatkan dari satu belitan ke belitan lainnya melalui rangkaian magnetik. Rasio jumlah lilitan sebenarnya dari kawat di setiap kumparan sangat penting dalam menentukan jenis transformator dan tegangan output. Rasio tegangan keluaran terhadap tegangan masukan sama dengan jumlah lilitan antara dua belitan. Tegangan keluaran trafo lebih besar dari tegangan masukan jika lilitan sekunder memiliki lilitan kawat lebih banyak dari lilitan utama. Trafo jenis ini dikenal sebagai “trafo step-up.” Sebaliknya, jika belitan sekunder memiliki belitan yang lebih sedikit daripada belitan primer, tegangan keluarannya lebih rendah. Ini dikenal sebagai “transformator step-down”. Secara matematis, konsep ini dapat dijelaskan sebagai berikut Misalkan ada N1 lilitan pada belitan primer dan N1​ lilitan pada belitan sekunder. Sebuah ggl bolak-balik E1 diterapkan pada kumparan primer, yang menghasilkan arus I1​ di sirkuit primer dan I2​ di sirkuit sekunder. Arus dalam kumparan menghasilkan magnetisasi di seluruh inti dan menetapkan medan magnet yang sesuai di dalam inti. Karena magnetisasi inti, medannya lebih besar dibandingkan dengan medan yang ditimbulkan oleh arus dalam kumparan saja. Ini menghasilkan ggl E2 yang lebih besar pada kumparan sekunder, yang berbanding lurus dengan ggl di kumparan primer. Persamaan yang mewakili hubungan ini diberikan sebagai 1. Transformator Daya Trafo daya adalah salah satu jenis trafo yang paling umum ditemui dalam kehidupan sehari-hari. Trafo daya, yang mengubah listrik masuk ke tegangan yang lebih tinggi atau lebih rendah untuk tujuan tertentu, adalah komponen kunci dalam suplai tegangan jaringan listrik. Trafo ini menghubungkan tegangan step down dan step up pada jaringan distribusi tanpa ada perubahan frekuensi selama transfer daya. Dalam sistem elektronik, transformator daya menawarkan sejumlah pasokan AC dari berbagai tegangan dan nilai arus yang sesuai dari pasokan listrik publik. 2. Transformator Tipe Shell Trafo tipe shell ditemukan di beberapa perangkat listrik kehidupan sehari-hari, seperti televisi, radio, dll. Trafo ini memiliki bentuk persegi panjang dan terdiri dari tiga komponen utama satu inti dan dua belitan. Gulungan primer dan sekunder dari transformator ini keduanya digulung pada satu cabang inti, menghasilkan silinder kumparan konsentris, yang membedakannya dari transformator lain. Konfigurasi ini menawarkan pengurangan kerugian fluks yang signifikan selama operasi transformator. Trafo semacam ini sering dilaminasi dan tidak termasuk minyak untuk insulasi. 3. Transformator Tipe Inti Transformator tipe inti adalah transformator yang memiliki dua belitan yang digulung secara terpisah pada dua atau tiga kaki inti. Tidak seperti transformator tipe shell, ada celah yang signifikan antara belitan primer dan sekunder dari transformator tipe inti. Laminasi dipotong dalam potongan berbentuk L, dan ditumpuk secara bergantian untuk menghilangkan keengganan yang tinggi pada sambungan di mana laminasi disatukan satu sama lain. Untuk membatasi fluks bocor, belitan primer dan sekunder disisipkan, dengan setengah dari masing-masing belitan disusun berdampingan atau konsentris pada kaki inti. Gulungan primer dan sekunder dipisahkan pada tungkai inti untuk kemudahan penggunaan. Antara inti dan belitan bawah, terdapat lapisan insulasi yang melindungi transformator dari korsleting. Trafo tipe inti membutuhkan lebih banyak konduktor tembaga daripada trafo tipe shell karena belitan diposisikan pada tungkai atau kaki yang terpisah di trafo tipe inti. 4. Transformator Toroida Trafo toroidal digunakan dalam perangkat elektronik atau listrik di mana ruang adalah hal sangat penting. Trafo toroidal adalah trafo daya dengan inti toroidal di mana kumparan primer dan sekunder dililit. Seperti namanya, mereka terlihat seperti komponen listrik berbentuk donat. Ketika arus mengalir melalui kumparan primer, itu menyebabkan gaya gerak listrik EMF pada gulungan sekunder, yang mentransfer daya dari kumparan primer ke kumparan sekunder. Struktur khas transformator toroidal memungkinkan kumparan yang lebih pendek, yang mengurangi kerugian resistif dan belitan serta meningkatkan efisiensi secara keseluruhan. Trafo daya toroidal sangat cocok untuk peralatan dan perangkat medis vital, karena efisiensi luar biasa sangat penting dalam sistem medis yang memerlukan arus bocor rendah, pengoperasian tanpa suara, dan keandalan jangka panjang. Karena trafo ini kecil dan ringan, mereka dapat dengan mudah diintegrasikan ke dalam instrumen medis di mana ruang dan berat merupakan faktor desain yang penting. 5. Autotransformator Sebagian besar digunakan dalam rentang tegangan rendah, autotransformator adalah jenis transformator yang hanya berisi satu belitan. Awalan “otomatis” mengacu pada kumparan tunggal yang berfungsi secara independen Yunani untuk “diri”, daripada sistem mekanis apa pun. Autotransformator mirip dengan transformator dua-belitan, tetapi gulungan primer dan sekunder tidak terhubung dengan cara yang sama. Autotransformator bekerja dengan prinsip yang sama seperti dua transformator berliku. Ia bekerja pada premis Hukum Faraday tentang Induksi Elektromagnetik, yang menyatakan bahwa setiap kali medan magnet dan konduktor dipindahkan lebih dekat bersama-sama, ggl diinduksi dalam konduktor. Ini adalah transformator dengan beberapa putaran umum antara kumparan primer dan sekunder. “Bagian Umum” mengacu pada bagian belitan yang dibagi oleh belitan primer dan sekunder. “Bagian Seri” mengacu pada bagian belitan yang tidak dibagi oleh primer dan sekunder. Dua terminal terhubung ke tegangan primer. Tegangan sekunder dihasilkan oleh dua terminal, salah satunya sering dibagi dengan terminal tegangan primer.
Makalahini dapat menjadi referensi bagi para pembaca untuk dikembangkan isinya. Pada umumnya, semua jenis trafo ini memiliki perbandingan jumlah lilitan yang sama yaitu 1:1 antara kumparan primer dan sekunder. Prinsip Kerja DC Power Supply (Catu Daya / Adaptor) Transformator atau yang kita kenal dengan trafo adalah alat elektronika yang memiliki kegunaan sebagai menaikkan tegangan
StudiElektronika. Blog Yang Membahas Seputar Elektronika dan Teknologi Pengertian, Jenis, dan Perbedaannya. 21 Jenis Saklar Listrik dan Fungsinya (LENGKAP) IC Gerbang Logika, TTL/CMOS/High Speed CMOS & Datasheet. Motor DC - Pengertian, Prinsip Kerja, Jenis & Aplikasi DC Motor. Contoh Soal Gerbang Logika Beserta Jawabannya (Update Terus
. 195 449 483 380 351 142 88 16
prinsip kerja elemen listrik primer dan sekunder